
Firewalls
SS-E 2019
Kevin Chege

ISOC

What’s a Firewall?
• Computer network security device to protect

devices, or restrict access to or from a network
• Analyzes traffic coming in or going out (or

through it) and determines a course of action
based on a pre-defined rule set

• Firewalls can be found anywhere:
– On your laptop OS
– On routers
– On server OS
– On network hardware appliances

Types of firewalls

• Packet Filters – analyze network packets and
decide a course of action based on configuration

• Stateful Filters – track network “conversations”
and maintain a table of which connections are in
an active conversations

• Application layer – aka Layer 7 firewalls are able
to detect if an unwanted protocol is attempting
to bypass the firewall on an allowed port

Keeping State vs Stateless

• Stateful inspection refers to ability to track the
state, or progress, of a network connection

• By storing information about each connection in
a state table, a firewall is able to quickly
determine if a packet passing through the firewall
belongs to an already established connection.

• If it does, it is passed through the firewall without
going through ruleset evaluation saving time and
avoiding extra processing.

Typical features of a Firewall
• Rule Syntax
• NAT control
• Able to pass, redirect or drop traffic based on the rules
• Logging feature – to allow audit of activities and of

traffic
• Stateful inspection - not all and may need to be

enabled with extra config options
• Ability to be either inclusive or exclusive - An exclusive

firewall allows all traffic through except for the traffic
matching the ruleset (default is to allow). Inclusive
firewall does the reverse (default is to block)

FreeBSD Firewalls
• FreeBSD ships with 3 Main firewalls:
– IPFW – IP FireWall is (by default) a stateless firewall.

FreeBSD sponsored firewall software application
authored and maintained by FreeBSD volunteer staff
members.

– IPF – IP Filter can be configured as stateful or
stateless. Open source application and has been
ported to FreeBSD, NetBSD, OpenBSD, SunOS™,
HP/UX, and Solaris™ operating systems. IPFILTER is
actively being supported and maintained, with
updated versions being released regularly.

– PF – Packet Filter can be configured as stateful or
stateless. Maintained by OpenBSD Project

Linux IPTables
• iptables is a user-space utility program that

allows a system administrator to configure
the tables provided by the Linux
kernel firewall which are implemented as
different Netfilter modules

• Netfilter offers various functions and operations
for packet filtering, network address translation,
and port translation, which provide the
functionality required for directing packets
through a network and prohibiting packets from
reaching sensitive locations within a network.

More on “iptables”

$ sudo apt-get install man

$ man iptables

What about default deny/permit?

• The recommended practice when setting up a
firewall is to take a "default deny" approach.

• That is, to deny everything and then selectively
allow certain traffic through the firewall.

• This approach is recommended because it errs on
the side of caution and also makes writing a
ruleset easier. the first two filter rules should be:

• HOWEVER, you may opt to approach your
firewall rules differently depending on the
scenario

Some iptables examples

sudo iptables -A INPUT -p icmp -j ACCEPT

• -A - Append one or more rules to the end of the
selected chain

• INPUT - The filter table is the default table. It
contains the actual firewall filtering rules. The
built-in chains include these INPUT, OUTPUT,
FORWARD

• -p icmp– Protocol (tcp, udp,, icmp, all, among
others)

• -j ACCEPT – Jump -This specifies the target of the
rule; i.e., what to do if the packet matches it:
either ACCEPT or DROP

sudo iptables -A INPUT -p icmp -j ACCEPT

• -A - Append one or more rules to the end of the
selected chain

• INPUT - The filter table is the default table. It
contains the actual firewall filtering rules. The
built-in chains include these INPUT, OUTPUT,
FORWARD

• -p icmp– Protocol (tcp, udp,, icmp, all, among
others)

• -j ACCEPT – Jump -This specifies the target of the
rule; i.e., what to do if the packet matches it:
either ACCEPT or DROP

sudo iptables -I INPUT -p icmp -j DROP

• -I - Inserts a rule at the beginning of the chain
• INPUT - The filter table is the default table. It

contains the actual firewall filtering rules. The
built-in chains include these INPUT, OUTPUT,
FORWARD

• -p icmp– Protocol (tcp, udp,, icmp, all, among
others)

• -j DROP – Jump -This specifies the target of the
rule; i.e., what to do if the packet matches it:
either ACCEPT or DROP

Show the order of the rules

sudo iptables -L INPUT -nv --line-numbers

Delete a rule

sudo iptables -D INPUT 1

FreeBSD Firewalls
• FreeBSD ships with 3 Main firewalls:
– IPFW – IP FireWall is (by default) a stateless firewall.

FreeBSD sponsored firewall software application
authored and maintained by FreeBSD volunteer staff
members.

– IPF – IP Filter can be configured as stateful or
stateless. Open source application and has been
ported to FreeBSD, NetBSD, OpenBSD, SunOS™,
HP/UX, and Solaris™ operating systems. IPFILTER is
actively being supported and maintained, with
updated versions being released regularly.

– PF – Packet Filter can be configured as stateful or
stateless. Maintained by OpenBSD Project

PF (Packet Filter)

• Was initially developed for OpenBSD
• Has been successfully ported to many other

operating systems including all the other BSDs
and Mac OS X

• Written by Daniel Hartmeier
• Derived its rule syntax from IPFilter
• Has many features

Features
• Can do both stateless or state-full firewalling
• Can do Network Address Translation

– Additionally can do Bidirectional NAT aka One to One NAT
• Combined with ALTQ (ALTernate Queueing framework

for BSD) can perform QoS
– Priority queuing – assign certain traffic a higher priority

than others before forwarding
– Class Based Queuing – assigning bandwidth to certain

queues and reducing bandwidth for others
• Can be configured for automatic fail-over between 2

boxes using CARP – Common Address Redundancy
Protocol

Features cont’d
• FTP-proxy integration to handle FTP firewalling
• Configurable logging per rule to pflogd

– Logs can be further monitored with tcpdump
• Simple IP Filter rule syntax

– Eg: pass in quick on em0 inet proto tcp all
• Macro definition – to simplify rule creation

– Eg identify an interface as “LAN” instead of “em0”
• Support for transparent proxying with SQUID

– Redirect all traffic destined for a port 80 to the Squid port
8080 for Squid to process

• Among many others

Working with PF

• Installed by default on FreeBSD since FreeBSD 5.3 but
is disabled

• Can start in from boot by adding the following to
/etc/rc.conf: pf_enable=YES
– Or by kldload pf.ko

• Start it by doing
– /etc/rc.d/pf start OR pfctl –e

• You may want to compile pf support into the kernel to
enable:
– Pfsync seudo device
– CARP for automatic failover
– ALTQ – for prioritization, bandwidth throttling

Options in rc.conf
• pf_enable="YES" # Enable PF (load module if required)
• pf_rules="/etc/pf.conf" # rules definition file for pf
• pf_flags="" # additional flags for pfctl startup
• pflog_enable="YES" # start pflogd(8)
• pflog_logfile="/var/log/pflog" # where pflogd should

store the logfile
• pflog_flags="" # additional flags for pflogd startup
• You will also want to enable packet forwarding

between interfaces and this can be done by
– gateway_enable=“YES” in /etc/rc.conf

Working with PF

• pfctl –e Enable PF
• pfctl -d Disable PF
• pfctl -F all -f /etc/pf.conf Flush all rules (nat,

filter, state, table, etc.) and reload
• pfctl -s [rules | nat | state] Report on the

filter rules, nat rules, or state table
• pfctl -vnf /etc/pf.conf Check /etc/pf.conf for

errors, but do not load ruleset

Packet Filtering with PF
• Rules are loaded from a file usually /etc/pf.conf
• Packets can be passed, redirected or dropped as

they pass through an interface
• PF inspects packets based on Layer 3 (IPv4/IPV6)

and Layer 4 headers (TCP, UDP, ICMP/v6)
• Can check for source/destination address,

protocol (Layer 4) and source/destination port
• Rules evaluated in sequential order – top to

bottom of the file

Packet Filtering with PF cont’d

• A packet is evaluated against all the rules UNLESS
the key word quick is specified

• If quick is not specified then the last rule to
match wins and action is taken on the packet

• There is an implicit pass all at the beginning
meaning that if a packet does not match any rule
then it will be passed

• You are free to circumvent this feature if you
want by having a “block all” at the top of the file

Rule Syntax
• action [direction] [log] [quick] [on interface] [af] [proto

protocol] [from src_addr [port src_port]] [to dst_addr [port
dst_port]] [flags tcp_flags] [state]

• action – pass or block
• direction – in or out
• log – should this be logged or not
• quick – specified action is taken immediately
• on interface – name of the interface
• inet – address family, inet6 for ipv6
• protocol – tcp, udp, icmp, icmp6 or others in /etc/protocols
• src_addr/dst_addr – source port or destination address
• src_port/dst_port – Number between 1 – 65535 (/etc/services
• tcp_flags – eg flags S/SA look only for SYN and ACK
• state – whether to check state. PF checks state by default

Good practice
• Recommended to have default deny at the

beginning of the file so that what you do not
specify is denied by default.
– i.e. to make it an exclusive firewall

• This is to counter the default pass rule
• Done by adding the below at the top of the file
– block in all

• Also good idea to leave out the loopback interface
and link local addresses
– set skip on lo0
– You can set a macro eg: ipv6_ll=“fe80::/10”

Some PF Examples
good_ports=“{ 22, 443, 80 }”
me=“192.168.0.1”
set skip on lo0
block in all
pass out all
pass in on em0 inet proto tcp from any to $me port $good_ports

##This is sufficient to allow any communication that the
server initiates (pass out all), allow all incoming tcp traffic to
the good ports and block all other incoming traffic. The “pass
out all” is needed despite PF having an implicit pass rule.
Removing it will mean traffic out will not match any rule but
incoming replies to conversations initiated by the server will
be matched against the “block in all” rule.

References and more reading

• http://en.wikipedia.org/wiki/PF_%28firewall%
29

• http://www.openbsd.org/faq/pf/filter.html
• http://www.freebsd.org/doc/en_US.ISO8859-

1/books/handbook/firewalls-pf.html
• http://en.wikipedia.org/wiki/Firewall_%28co

mputing%29
• http://www.informit.com/articles/article.aspx

?p=421057&seqNum=4

http://en.wikipedia.org/wiki/PF_(firewall)
http://www.openbsd.org/faq/pf/filter.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-pf.html
http://en.wikipedia.org/wiki/Firewall_(computing)
http://www.informit.com/articles/article.aspx?p=421057&seqNum=4

