Techniques d'Optimisation BGP

Atelier SI-F AfNOG 2018, Dakar

Techniques d'Optimisation BGP (BGP Scaling)

- Les spécifications et techniques de déploiement originelles de BGP étaient appropriées pour l'Internet du début des années 1990s
 - Mais Ne « scale » pas aux réseaux d'aujourd'hui
- Les problèmes rencontrés lorsque l'Internet s'est agrandi incluent:
 - Optimisation du maillage iBGP au-delà de quelques pairs?
 - Implémentation de nouvelles politiques sans causer d'oscillations (flap) et d'incohérences dans les mises à jour de routes (churn)?
 - Maintenir le réseau stable, évolutif et simple?

Techniques d'optimisation BGP (BGP Scaling)

- Les meilleures techniques actuelles d'optimisation
 - Route Refresh
 - Peer-groups
 - Route reflector (et confédérations)
- Techniques d'optimisation obsolètes
 - Soft Reconfiguration
 - Route Flap Damping

Reconfiguration dynamique

Changements non-destructifs de politiques

Route Refresh

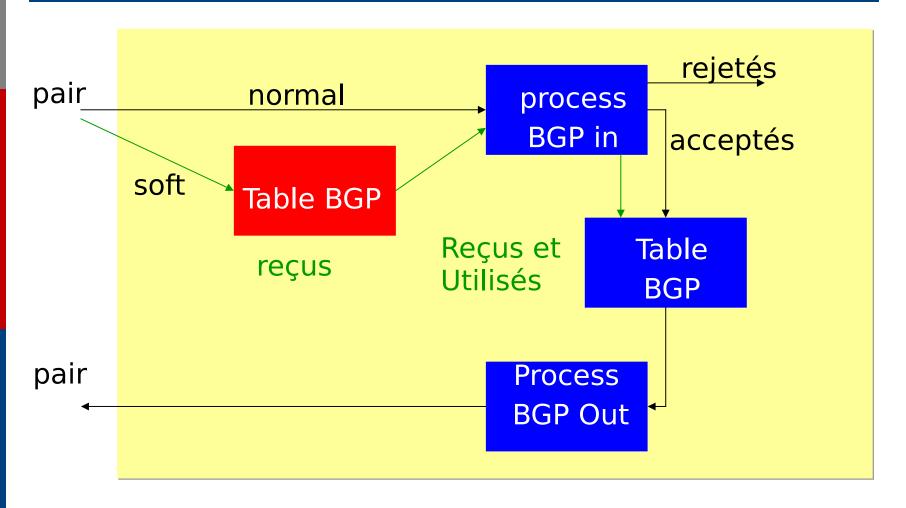
- Changement de politiques:
 - Réinitialisation dure avec les pairs BGP requise après chaque changement de politique car le routeur ne stocke pas les préfixes qui sont rejetés par les politiques
- Réinitialisation abrupte avec le peer BGP:
 - Casse la session BGP
 - Consomme du CPU
 - Perturbe considérablement la connectivité pour tous les réseaux
- Solution:
 - Route Refresh

Capabilité de Route Refresh

- Facilite les changements de politiques non destructifs
- Pas de configuration spécifique requise
 - Négocié automatiquement à l'établissement de la session
- Pas de mémoire additionnelle requise
- Requière que les routeurs pairs supportent la capabilité "route refresh" – RFC2918
- Comment dire au paire de renvoyer toutes les annonces BGP
 - clear ip bgp x.x.x.x [soft] in
- Comment Renvoyer toutes les annonces BGP au paire

```
clear ip bgp x.x.x.x [soft] out
```

Reconfiguration dynamique


- Utiliser la capabilité Route Refresh
 - Supportée par presque tous les routeurs
 - Se renseigner avec la commande
 - "show ip bgp neighbor"
 - Non-perturbateur, "Bon pour l'Internet"
- Réinitialisation dure à utiliser seulement en dernier recours

Considérer l'effet comme étant équivalent à un reboot du routeur

Soft Reconfiguration de Cisco

- Obsolète— mais:
- Le routeur normalement stocke les préfixes qui ont été reçus d'un pair après application des politiques
 - Activer soft-reconfiguration signifie que le routeur stocke aussi les préfixes/attributs reçus avant d'appliquer les politiques
 - Utilise plus de mémoire pour garder les préfixes dont les attributs ont été changés ou les préfixes qui n'ont pas été acceptés
- Seulement utile lorsque l'opérateur veut savoir quels sont les préfixes qui ont été envoyés à un routeur avant que le routeur n'ai appliqué ses politiques d'entrées

Soft Reconfiguration de Cisco

Soft Reconfiguration

```
router bgp 100
neighbor 1.1.1.1 remote-as 101
neighbor 1.1.1.1 route-map infilter in
neighbor 1.1.1.1 soft-reconfiguration inbound
! On n'a pas besoind de configurer pour
l'Outbound!
```

 Ensuite lors de changement de politique, nous lançons la commande

```
clear ip bgp 1.1.1.1 soft [in | out]
```

- Note:
 - Lorsque "soft reconfiguration" est activé, nous n'avons pas accès à la capabilté route refresh
 - clear ip bgp 1.1.1.1 [in | out] fait aussi un soft
 refresh

Peer Groups

Peer Groups

- Problème comment rendre iBGP scalable
 - Le maillage complet iBGP est lente à construire
 - Les voisins iBGP recoivent le même update
 - CPU du routeur gaspillé alors que les calculs sont identiques
- Solution peer-groups
 - Groupe les pairs avec les mêmes politiques de sortie
 - Les mises à jours (updates) sont générées une seule fois par groupe

Peer Groups - Avantages

- Facilite la configuration
- Moins d'erreurs de configuration
- Configuration plus lisible
- Diminue la charge CPU du routeur
- □ Maillage iBGP se construit plus rapidement
- Membres peuvent avoir des politiques d'entrées différentes
- Peut être utilisé pour les voisins eBGP également!

Configurer un Peer Group

```
router bgp 100
neighbor ibgp-peer peer-group
neighbor ibgp-peer remote-as 100
neighbor ibgp-peer update-source loopback 0
neighbor ibgp-peer send-community
neighbor ibgp-peer route-map outfilter out
neighbor 1.1.1.1 peer-group ibgp-peer
neighbor 2.2.2.2 peer-group ibgp-peer
neighbor 2.2.2.2 route-map infilter in
neighbor 3.3.3.3 peer-group ibgp-peer
```

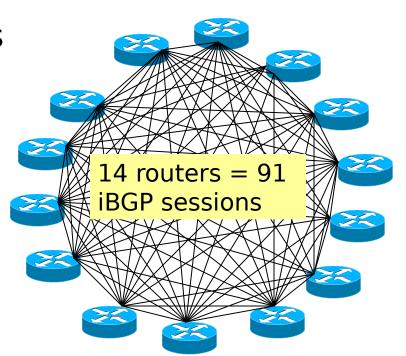
[!] Remarquez que 2.2.2.2 a des politiques d'entrées différentes du peer-group !

Configurer un Peer Group

```
router bgp 100
neighbor external-peer peer-group
neighbor external-peer send-community
neighbor external-peer route-map set-metric out
neighbor 160.89.1.2 remote-as 200
neighbor 160.89.1.2 peer-group external-peer
neighbor 160.89.1.4 remote-as 300
neighbor 160.89.1.4 peer-group external-peer
neighbor 160.89.1.6 remote-as 400
neighbor 160.89.1.6 peer-group external-peer
neighbor 160.89.1.6 filter-list infilter in
```

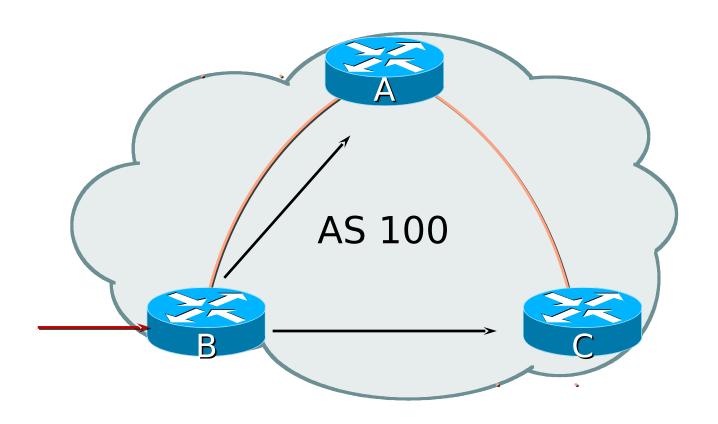
Peer Groups

- Toujours configurer des peer-groups pour iBGP
 - Même s'il n'y a que quelques pairs iBGP
 - Plus facile pour faire évoluer le réseau dans le futur
- Considérer l'utilisation des peer-groups pour eBGP
 - Particulièrement utile lorsque plusieurs clients utilisent le même AS (RFC2270)
 - Utile aussi aux points d'échanges (IXP) où les politiques sont généralement les mêmes pour tous les pairs
- Peer-groups sont obsolètes
 - Mais encore largement considérés comme bonne pratique
 - Remplacés par update-groups (codés en interne pas configurable)
 - Amélioré avec les peer-templates (permettant des conceptions plus complexes)

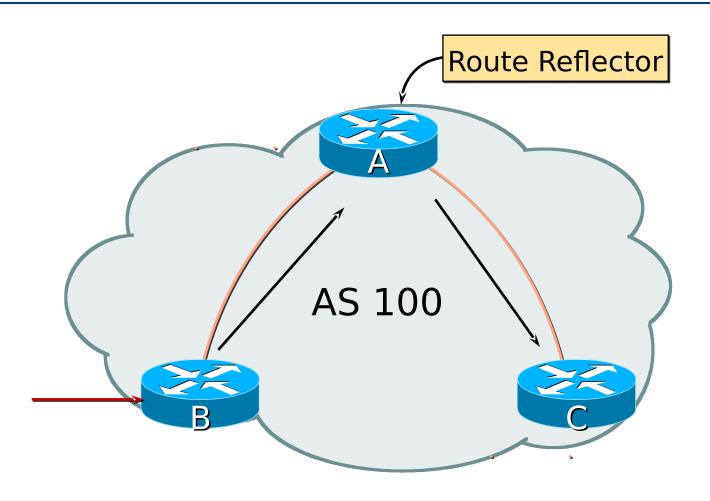

Route Reflectors

Evolution du maillage iBGP

Evolution du maillage iBGP

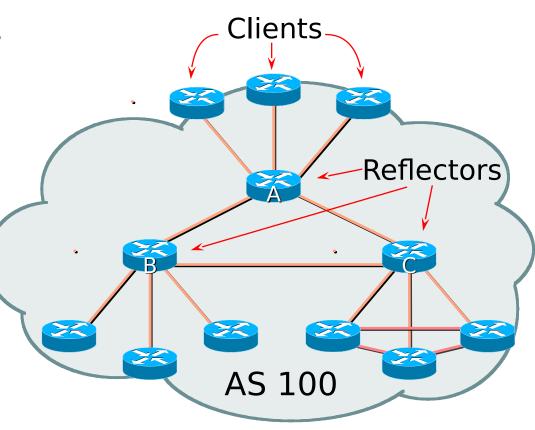

Eviter les ½n(n-1) sessions du maillage complet iBGP

n=1000 ⇒ presque
 un demi million
 de sessions ibgp!



- Deux solutions
 - Réflecteurs de route plus simples à déployer et maintenir
 - Confédération plus complexes, avantages induits

Route Reflector: Principe



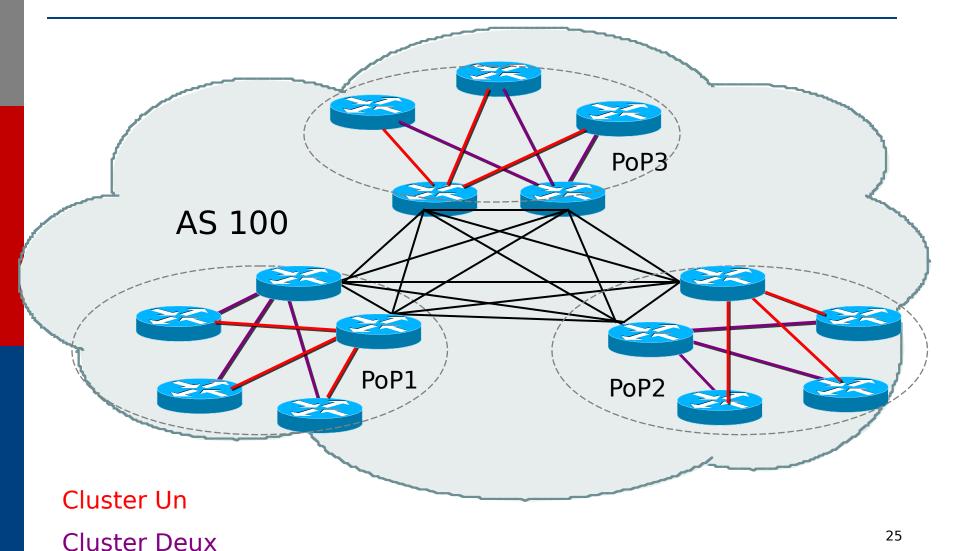
Route Reflector: Principe

Route Reflector

- le réflecteur reçoit les chemins des clients et des non-clients
- Sélectionne le meilleur chemin
- Si le meilleur chemin est d'un client, envoyer aux autres clients et aux nonclients
- Si le meilleur chemin est d'un non-client, envoyer seulement aux clients
- Plus de maillage entre les clients
- Décrit dans RFC4456

Topologie Route Reflector

- Diviser le backbone en groupes/clusters
- Au moins un route reflector et quelques clients par cluster
- Route reflectors forment un maillage complet(full-mesh)
- Clients dans un cluster peuvent former un maillage
- Un seul IGP pour transporter les next-hop et les routes locales


Route Reflectors: Eviter les boucles

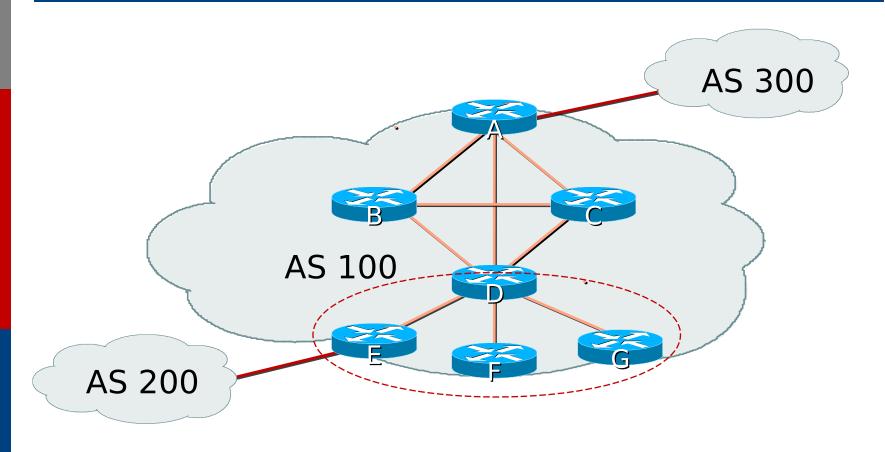
- Attribut Originator_ID
 - Transporte le Router ID du routeur d'origine dans l'AS local (crée par le RR)
- Attribut Cluster_list
 - Le cluster-id local est ajouté lorsque l'update est envoyé par le RR
 - Cluster-id est le router-id (adresse loopback)
 - NE pas utiliser bgp cluster-id x.x.x.x

Route Reflectors: Redondance

- Plusieurs RRs peuvent être configurés dans le même cluster – pas recommandé!
 - Tous les RRs du cluster doivent avoir le même cluster-id (sinon ils sont dans un cluster différent)
- Un routeur peut être client de RRs de clusters différents
 - Il est fréquent de voir aujourd'hui dans les réseaux d'ISP que les clusters se recouvrent – moyen pour obtenir de la redondance
 - → Chaque client a deux RRs = redondance

Route Reflectors: Redondance

25


Route Reflector: Intérêt

- Résout le problème du maillage iBGP
- Pas d'effet sur le transfert des paquets
- Les speakers BGP normaux co-existent
- Plusieurs reflecteurs pour un client pour avoir la redondance
- Migration facile
- Plusieurs niveaux de route reflectors

Route Reflectors: Migration

- Où placer les route reflecteurs?
 - Suivre la topologie physique!
 - Ceci guarantit que le transfert de paquets ne sera pas impacté
- Configurer un RR à la fois
 - Eliminer les sessions iBGP redondantes
 - Placer un RR par cluster

Route Reflectors: Migration

Migrer de petits morceaux du réseau, un morceau à la fois.

Configurer un Route Reflector

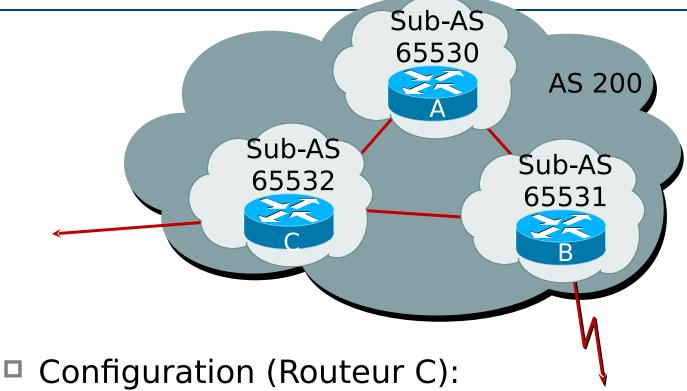
Configuration du routeur D:

```
router bgp 100
...
neighbor 1.2.3.4 remote-as 100
neighbor 1.2.3.4 route-reflector-client
neighbor 1.2.3.5 remote-as 100
neighbor 1.2.3.5 route-reflector-client
neighbor 1.2.3.6 remote-as 100
neighbor 1.2.3.6 route-reflector-client
...
```

Techniques d'optimisation BGP

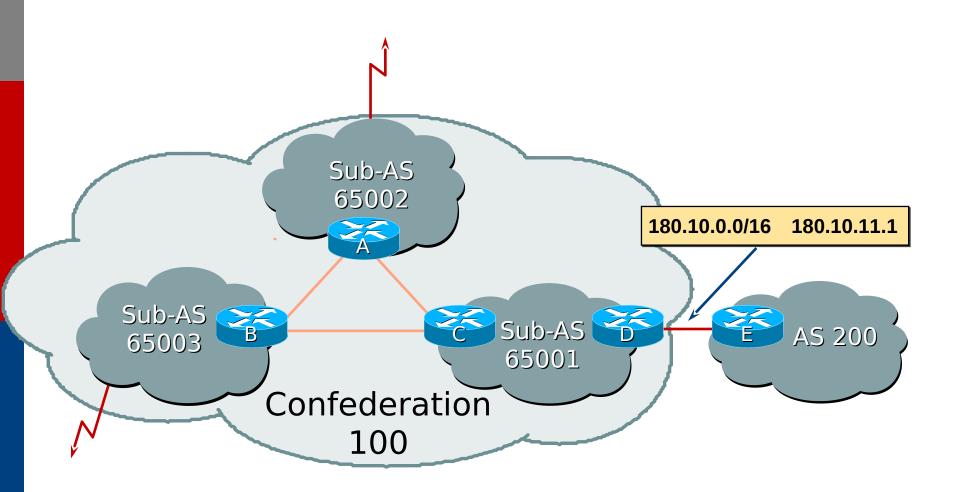
- Ces 3 techniques sont primordiales pour tous les ISPs
 - Route Refresh (ou Soft Reconfiguration)
 - Peer groups
 - Route Reflectors

Confédérations BGP


Confédérations

- Diviser l'AS en sous-AS
 - eBGP entre les sous-AS, mais certaines informations iBGP sont maintenues
 - Préserver NEXT_HOP à travers les sous-AS (IGP porte cette information)
 - Préserver LOCAL_PREF et MED
- Habituellement, un seul IGP
- Décrit dans la RFC5065

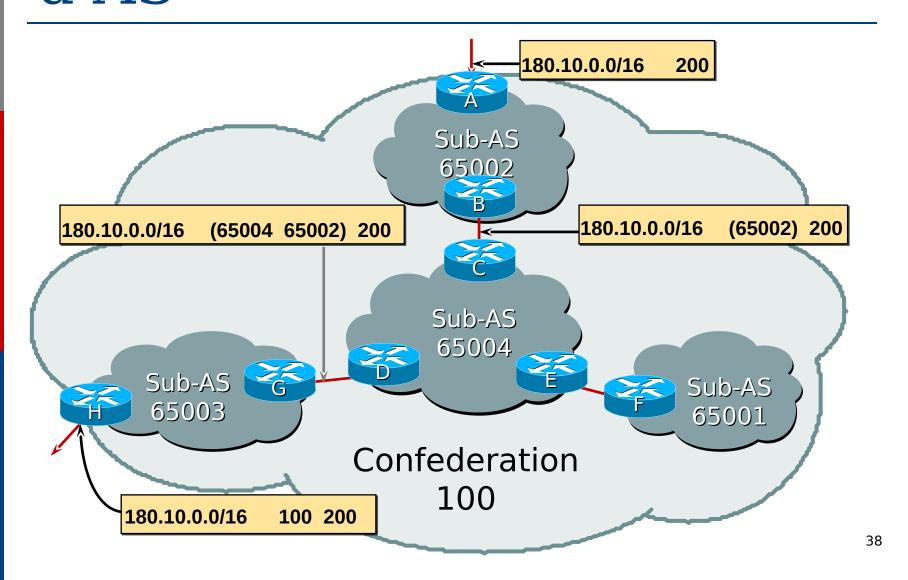
Confédérations


- Visible au monde extérieur comme un seul AS à travers - " identificateur de Confédération "
 - Chaque sous-AS utilise un numéro d'AS de l'espace privé (64512-65534)
- Les routeurs iBGP dans les sous-AS sont entièrement maillés
 - Le nombre total de voisins est ainsi réduit en limitant l'exigence de maillage complet qu'aux seuls pairs dans les sous-AS

Confédérations

router bgp 65532 bgp confederation identifier 200 bgp confederation peers 65530 65531 neighbor 141.153.12.1 remote-as 65530 neighbor 141.153.17.2 remote-as 65531

Confédérations: Next Hop


Confédération: Le Principe

- La préférence locale et le MED influencent la sélection du chemin
- Préserver la préférence locale et MED à travers les frontières des sous-AS
- Sub-AS eBGP path administrative distance

Confédérations: éviter les boucles (Loop Avoidance)

- Les sous-AS traversés sont considérés dans l'AS-path
- Transporter aussi bien la séquence AS que la longueur de l'AS-Path
- Considérer es frontières des confédérations
- Séquence AS doit être omise lors de la comparaison MED

Confédérations: séquences d'AS

Les décisions de propagation de route

- Même chose qu'avec BGP «normal»:
 - À partir de pairs dans le même sous-AS → uniquement vers des pairs externes
 - À partir de pairs externes → vers tous les voisins
- «Pairs externes» désignent
 - Des pairs en dehors de la confédération
 - Des Pairs dans un autre sous-AS
 - préservent LOCAL_PREF, MED et NEXT_HOP

Confederations (suite.)

Exemple (suite.):

```
BGP table version is 78, local router ID is 141.153.17.1
Status codes: s suppressed, d damped, h history, * valid, >
  best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0 141.153.14.3 0
                              100
                                           (65531) 1 i
*> 141.153.0.0 141.153.30.2 0
                              100
                                      0 (65530) i
*> 144.10.0.0 141.153.12.1 0
                                      0
                              100
                                           (65530) i
*> 199.10.10.0 141.153.29.2 0
                                      0
                                           (65530) 1 i
                              100
```

Plus de points sur les confédérations

- Peut facilter "l'absorption" d'autres ISPs dans votre réseau
 - par exemple, si un ISP achète un autre ISP
 - (peut utiliser les caractéristiques d'un AS local pour faire la même chose)
- Vous pouvez utiliser des réflecteurs de routes avec la confédération sous-AS pour réduire le maillage iBGP des sous-AS

Confédérations: Avantages

- Résout les problèmes de maillage iBGP
- Le transfert de paquets n'est pas affecté
- Peut être utilisé avec des réflecteurs de route
- Des politiques pourraient être appliquées pour acheminer le trafic entre les sous-AS

Confédérations: Mises en garde

- Nombre minimal de sous-AS
- Hiérarchie des sous-AS
- Inter-connectivité minimale entre les sous-AS
- Diversité de trajet
- Migration difficile
 - BGP reconfiguré en sous-AS
 - doit être appliquée à travers le réseau

RR ou Confédérations

	Connectivit é Internet	Hiérarchie à niveaux multiples	Contrôle des Politiques	Évolutivité	Complexité de la migration
Confédérations	N'importe où dans le réseau	Ì	Oui	Moyen	Moyen à élevé
Réflecteurs de route	N'importe où dans le réseau	Oui	Oui	Très élevé	Très faible

La plupart des nouveaux réseaux fournisseurs de services désormais déploie des réflecteurs de route dès la première journée

Route Flap Damping

Stabilité réseau pour les années 1990

Instabilité réseau pour le 21e siècle!

Route Flap Damping

- Pendant de nombreuses années, Route
 Flap Damping était une pratique fortement recommandée
- Maintenant, elle est fortement déconseillée car elle provoque beaucoup plus d'instabilité réseau qu'elle n'en guarantit.
- Mais d'abord, voyons la théorie ...

Route Flap Damping

- Route flap
 - Montée et descente de trajectoire (path) ou changement dans l'attribut
 - RETRAIT d'un pair BGP suivi d'1 MISE A JOUR= 1 flap
 - Voisin eBGP oscillant down/up N'EST pas 1flap
 - Se répercute à travers tout l'Internet
 - Gaspille du CPU
- Le Damping vise à réduire la portée de propagation des " route flap "

Route Flap Damping (suite)

- Exigences
 - Convergence rapide pour les changements de route normaux
 - L'histoire prédit les comportements futurs
 - Supprime les routes oscillantes
 - Annonce les routes stables
- Mise en œuvre décrit dans la RFC 2439

Historique du Route Flap Damping

- Premières mises en œuvre sur l'Internet en 1995
- Paramètres par défaut des vendeurs trop rigoureux
 - Recommandations du groupe de travail sur RIPE Routing dans ripe-178, ripe-210, et ripe-229
 - http://www.ripe.net/ripe/docs
 - Mais de nombreux ISP se sont tout simplement positionnés sur les valeurs par défaut des vendeurs sans réfléchir

Problèmes graves:

- "Route Flap Damping Exacerbates Internet Routing Convergence"
 - Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002
- "What is the sound of one route flapping?"
 - Tim Griffin, June 2002
- Divers travaux sur la convergence de routage par Craig Labovitz et Abha Ahuja il y a quelques années
- "Happy Packets"
 - Des travaux étroitement liés par Randy Bush et al

Techniques d'Optimisation BGP

Atelier SI-F AfNOG 2018, Dakar