Domain Name System (DNS)

Session-1: Fundamentals

Joe Abley AfNOG Workshop, AIS 2017, Nairobi

Computers use IP addresses. Why do we need names?

- Names are easier for people to remember
- Computers may be moved between networks, in which case their IP addresses will change.
- Services might move between computers, in which case their IP addresses will change.

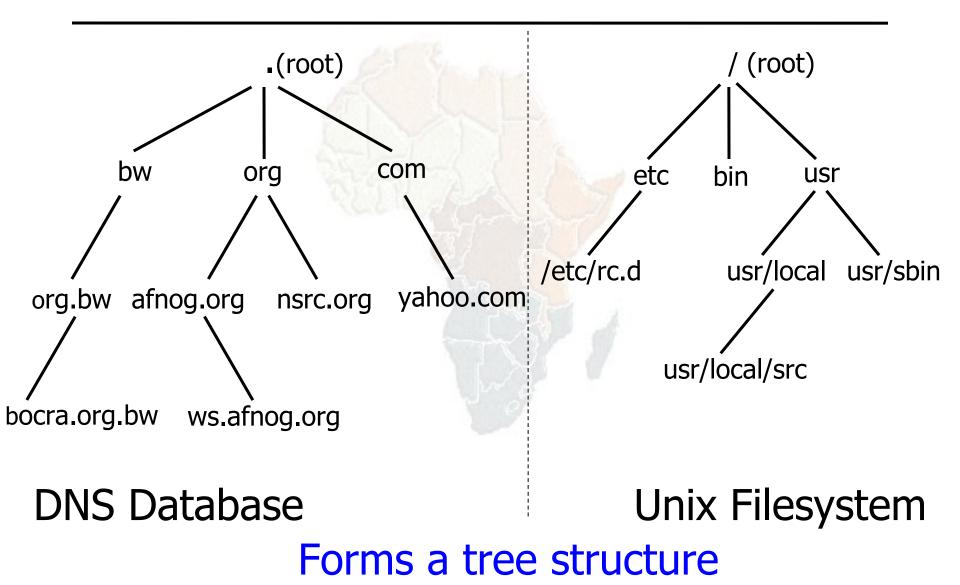
The old solution: HOSTS.TXT

• A centrally-maintained file, distributed to all hosts on the Internet

•SPARKY 11 •UCB-MAILGATE 4 •FTPHOST 2

128.4.13.9 4.98.133.7 200.10.194.33

- •... etc
- This feature still exists:
 - /etc/hosts (UNIX)
 - c:\windows\hosts


hosts.txt does not scale

- X Huge file (traffic and load)
- X Name collisions (name uniqueness)
- X Consistency
- X Always out of date
- X Single point of Administration
- X Did not scale well

The Domain Name System was born

- DNS is a distributed database for holding name to IP address (and other) information
- Distributed:
 - Shares the Administration
 - Shares the Load
- Robustness and improved performance achieved through
 - replication
 - and caching
- Employs a client-server architecture
- A critical piece of the Internet's infrastructure

DNS is Hierarchical

DNS is Hierarchical (contd.)

- Globally unique names
- Administered in zones (parts of the tree)
- You can give away ("delegate") control of part of the tree underneath you
- Example:
 - org on one set of nameservers
 - afnog.org on a different set
 - ws.afnog.org on a different set

Domain Names are (almost) unlimited

- Max 255 characters total length
- Max 63 characters in each label – RFC 1034, RFC 1035
- If a domain name is being used as a host name, you should abide by some restrictions
 - RFC 952 (old!)
 - a-z 0-9 and minus (-) only
 - No underscores (_)

Using the DNS

- A Domain Name (like www.ws.afnog.org) is the KEY to look up information
- The result is zero or more RESOURCE RECORD SETS (RRSets)
- There are different RRTYPEs for different types
 of information
- You can ask for the specific type you want, or ask for "any" RRs associated with the domain name

Commonly seen Resource Record Types (RRTYPEs)

- A (address): map hostname to IPv4 address
- AAAA (quad A): map a hostname to IPv6 address
- PTR (pointer): map IP address to hostname
- MX (mail exchanger): where to deliver mail for a mail domain
- CNAME (canonical name): map alternative hostname to real hostname
- TXT (text): any descriptive text
- NS (name server), SOA (start of authority): used for delegation and management of the DNS itself

A Simple Example

- Query: www.afnog.org.
- Query type: A
- Result:

www.afnog.org. 14400 IN A 196.216.2.4

 In this case a single RR is found, but a set of multiple RRs may be returned.
 – (IN is the "class" for INTERNET use of the DNS)

Possible results from a Query

- POSITIVE ("NOERROR")
 - the name exists, and has zero or more RRSets associated with it
- NEGATIVE ("NXDOMAIN")
 - the name does not exist
- SERVER FAILURE ("SERVFAIL")
 server is having bad hair day
- FORMAT ERROR ("FORMERR")
 - the query you sent was broken in some way
- REFUSED ("REFUSED")

You are not allowed to query the server

How do you use an IP address as the key for a DNS query

- Convert the IP address to dotted-quad
- Reverse the four parts
- Add ".in-addr.arpa." to the end; special domain reserved for this purpose

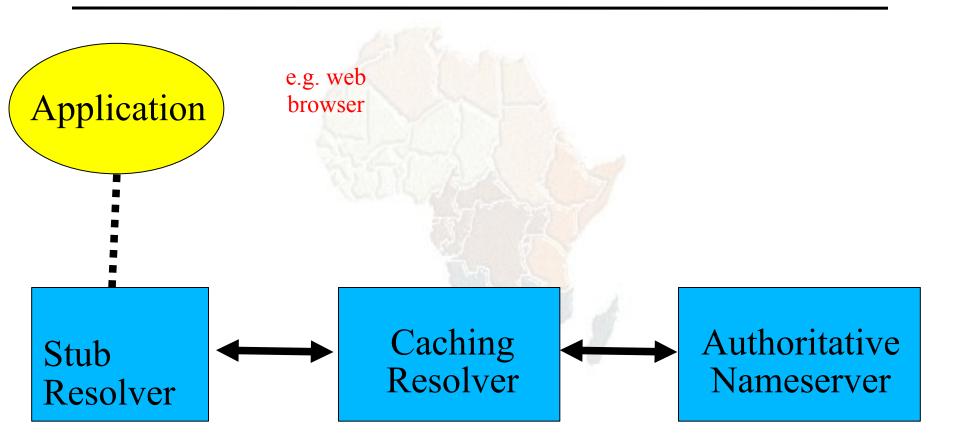
e.g. to find name for 193.194.185.25

Domain name: 25.185.194.193.in-addr.arpa. Query Type: PTR

Result: ashanti.gh.com.

Known as a "reverse DNS lookup" (because we are looking up the name for an IP address, rather than the IP address for a name)

Any Questions?



DNS is a Client-Server application

- (Of course it runs across a network)
- Requests and responses are most frequently carried in UDP packets, port 53
- DNS can also use TCP transport, port 53

 for large responses (not just zone transfers)
 - because you want to exchange more than one query/response on a single session
 - because a response you received told you to with $\ensuremath{\mathsf{TC}}\xspace{=}1$
 - because UDP is being aggressively rate-limited or blocked (e.g. to mitigate a reflection attack)

There are three roles involved in DNS

Three roles in DNS

STUB RESOLVER

Takes request from application, formats it into UDP packet, sends to recursive resolver

RECURSIVE RESOLVER

- Returns the answer if already known
- Otherwise searches for an authoritative server which has the information
- Caches the result for future queries
- AUTHORITATIVE NAMESERVER
 - Contains the actual information published in the DNS by the domain owner

- The SAME protocol is used for stub<-> resolver and resolver <-> auth nameserver
- It is possible to configure a single name server as both a resolver and an authoritative server
- But it still performs only one role for each incoming query
- Common but NOT RECOMMENDED to configure in this way (we will see why later).

ROLE 1: THE STUB RESOLVER

- A piece of software which formats a DNS request into a DNS message, sends it to a resolver, and decodes the response when it arrives
- Usually a shared library (e.g. libresolv.so under Unix) because so many applications need it
- EVERY host needs a stub resolver e.g. every Windows workstation has one

How does the stub resolver find a recursive nameserver?

- It has to be explicitly configured (statically, or via DHCP etc)
- Must be configured with the IP ADDRESS of a cache (why not its name?)
- Good idea to configure more than one recursive nameserver, in case the first one fails
 - But failover between them might not be quick

How do you choose which recursive resolver(s) to configure?

- Must have PERMISSION to use it
 - e.g. recursive resolver at your ISP, or your own, or a deliberately-public one
- Prefer a nearby recursive resolver
 - Minimises round-trip time and packet loss
 - Can reduce traffic on your external link, since often the cache can answer without contacting other servers
- Prefer a reliable recursive resolver
 - Perhaps your own?

Stub resolvers can be configured with search domain(s)

- If "foo.bar" fails, then retry query as "foo.bar.mydomain.com"
- Can save typing but adds confusion
- May generate extra unnecessary traffic
- Usually best avoided

Example: Unix stub resolver configuration

/etc/resolv.conf

search sse.ws.afnog.org nameserver 196.200.219.200 nameserver 196.200.223.1

That's all you need to configure a resolver

Testing DNS

- Just put "www.yahoo.com" in a web browser?
- Why is this not a good test?

Testing DNS with "dig"

- "dig" is a program which just makes DNS queries and displays the results
- Better than "nslookup", "host" because it shows the raw information in full
- dig ws.afnog.org.
 - -- defaults to query type "A"
- dig afnog.org. mx
 - -- specified query type
- dig @196.200.223.1 afnog.org. mx
 - -- send to particular cache (overrides
 /etc/resolv.conf)

dig ws.afnog.org.

- Prevents any default domain being appended
- Get into the habit of using it always when testing DNS
 - only on domain names, not IP addresses or e-mail addresses

[field@term /usr/home/field]\$ dig @zoe.dns.gh. downloads.dns.gh. a

; <<>> DiG 9.3.1 <<>> @zoe.dns.gh. downloads.dns.gh. a ; (1 server found) ;; qlobal options: printemd ;; Got answer: ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34963 ; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 0 ;; QUESTION SECTION: ;downloads.dns.gh. IN Α ;; ANSWER SECTION: 3600 downloads.dns.gh. IN zoe.dns.gh. CNAME zoe.dns.qh. 3600 IN Α 147.28.0.23 ;; AUTHORITY SECTION: 3600 IN zoe.dns.gh. dns.gh. NS dns.gh. 3600 mantse.gh.com. IN NS dns.gh. 3600 IN NS snshq902.ghanatel.com.gh. ;; Query time: 275 msec ;; SERVER: 147.28.0.23#53(147.28.0.23)

- ;; WHEN: Sat May 24 00:17:53 2008
- ;; MSG SIZE rcvd: 145

Understanding output from dig

STATUS

- NOERROR: 0 or more RRs returned
- NXDOMAIN: non-existent domain
- SERVFAIL: cache could not locate answer
- REFUSED: query not available on cache server
- FLAGS
 - AA: Authoritative answer (not from cache)
 - You can ignore the others
 - QR: Query/Response (1 = Response)
 - RD: Recursion Desired
 - RA: Recursion Available
- ANSWER: number of RRs in answer

Understanding output from dig

- Answer section (RRs requested)
 - Each record has a Time To Live (TTL)
 - Says how long the cache will keep it
- Authority section
 - Which nameservers are authoritative for this domain
- Additional section
 - More RRs (typically IP addresses for the authoritative nameservers)
- Total query time
- Check which server gave the response!
 - If you make a typing error, the query may go to a default server