BGP Best Practices

Scalable Infrastructure Workshop AfNOG 2010

Configuring BGP

Where do we start?

IOS Good Practices

□ ISPs should start off with the following BGP commands as a basic template: router bgp 64511 ← Replace with public ASN bgp deterministic-med distance bgp 200 200 200 no synchronization Make ebgp and ibgp distance the same no auto-summary

If supporting more than just IPv4 unicast neighbours

no bgp default ipv4 unicast is also very important and required

IOS Good Practices

BGP in Cisco IOS is permissive by default

- Configuring BGP peering without using filters means:
 - All best paths on the local router are passed to the neighbour
 - All routes announced by the neighbour are received by the local router
 - Can have disastrous consequences
- Good practice is to ensure that each eBGP neighbour has inbound and outbound filter applied:

router bgp 64511

neighbour 1.2.3.4 remote-as 64510

neighbour 1.2.3.4 prefix-list as64510-in in

neighbour 1.2.3.4 prefix-list as64510-out out

What is BGP for??

What is an IGP not for?

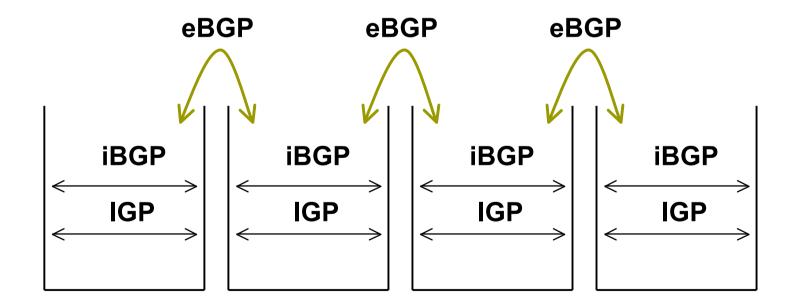
BGP versus OSPF/ISIS

Internal Routing Protocols (IGPs)

- examples are ISIS and OSPF
- used for carrying infrastructure addresses
- NOT used for carrying Internet prefixes or customer prefixes
- design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

BGP used internally (iBGP) and externally (eBGP)


- □ iBGP used to carry
 - some/all Internet prefixes across backbone
 - customer prefixes

eBGP used to

- exchange prefixes with other ASes
- implement routing policy

BGP/IGP model used in ISP networks

Model representation

BGP versus OSPF/ISIS

DO NOT:

distribute BGP prefixes into an IGP

- distribute IGP routes into BGP
- use an IGP to carry customer prefixes

□ YOUR NETWORK WILL NOT SCALE

Aggregation

Quality, not Quantity!

Aggregation

- ISPs receive address block from Regional Registry or upstream provider
- Aggregation means announcing the address block only, not subprefixes
- Aggregate should be generated internally

Configuring Aggregation: Cisco IOS

ISP has 101.10.0.0/19 address block

To put into BGP as an aggregate:

router bgp 100

network 101.10.0.0 mask 255.255.224.0

ip route 101.10.0.0 255.255.224.0 null0

□ The static route is a "pull up" route

- more specific prefixes within this address block ensure connectivity to ISP's customers
- "longest match lookup"

Aggregation

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless finetuning multihoming
 - And even then care and frugality is required don't announce more subprefixes than absolutely necessary

Announcing Aggregate: Cisco IOS

Configuration Example

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 102.102.10.1 remote-as 101
neighbor 102.102.10.1 prefix-list out-filter out
!
ip route 101.10.0.0 255.255.224.0 null0
!
ip prefix-list out-filter permit 101.10.0.0/19
ip prefix-list out-filter deny 0.0.0.0/0 le 32
```

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries' minimum allocation size is now at least a /21 or /22
 - no real reason to see anything much longer than a /22 prefix in the Internet
 - BUT there are currently ~168000 /24s!

The Internet during AfNOG 2009 (April 2009)

Internet Routing Table Statistics

BGP Routing Table Entries 288336
 Prefixes after maximum aggregation 136251
 Unique prefixes in Internet 140888
 Prefixes smaller than registry alloc 142536
 /24s announced 150651
 only 5797 /24s are from 192.0.0/8
 ASes in use 31224

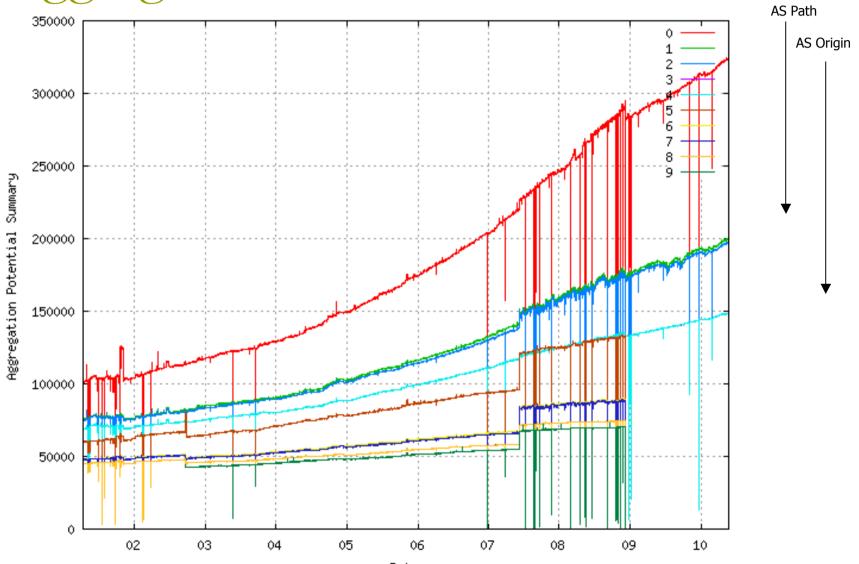
The Internet Today (May 2010)

Current Internet Routing Table Statistics

BGP Routing Table Entries	321324
Prefixes after maximum aggregation	147948
Unique prefixes in Internet	155831
Prefixes smaller than registry alloc	154125
/24s announced	168259
only 5730 /24s are from 192.0.0.0/8	
ASes in use	33989

Efforts to Improve Aggregation: The CIDR Report

- Initiated and operated for many years by Tony Bates
- Now combined with Geoff Huston's routing analysis


www.cidr-report.org

- Results e-mailed on a weekly basis to most operations lists around the world
- Lists the top 30 service providers who could do better at aggregating

Efforts to Improve Aggregation: The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse

Aggregation Potential

Date

Importance of Aggregation

Size of routing table

- Memory is no longer the problem
- Routers can be specified to carry 1 million prefixes
- Convergence of the Routing System
 - This is a problem
 - Bigger table takes longer for CPU to process
 - BGP updates take longer to deal with
- BGP Instability Report tracks routing system update activity
 - http://bgpupdates.potaroo.net/instability/bgpupd.html

The BGP Instability Report

Http://bgpupdates.potaroo.net/instability/bgpupd.html

C Q- Google

💭 🇰 Radio 🔻 Philip 🔻 Networking 👻 Cisco 🔻 Miscellaneous 🔻 Smart Bookmarks 🔻 TinyURL!

The BGP Instability Report

The BGP Instability Report is updated daily. This report was generated on 12 May 2010 06:10 (UTC+1000)

50 Most active ASes for the past 7 days

RANK	ASN	UPDs	%	Prefixes	UPDs/Prefix	AS NAME
1	9829	15451	1.53%	814	18.98	BSNL-NIB National Internet Backbone
2	8386	12482	1.24%	194	64.34	KOCNET KOCNET-AS
3	4538	11464	1.14%	281	40.80	ERX-CERNET-BKB China Education and Research Network Center
4	10113	10582	1.05%	219	48.32	DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
5	28477	10192	1.01%	9	1132.44	Universidad Autonoma del Esstado de Morelos
6	8452	10153	1.01%	1324	7.67	TEDATA TEDATA
7	41786	9037	0.90%	21	430.33	ERTH-YOLA-AS CJSC "Company "ER-Telecom" Yoshkar-Ola
8	5800	8828	0.87%	220	40.13	DNIC-ASBLK-05800-06055 - DoD Network Information Center
9	8151	8062	0.80%	1559	5.17	Uninet S.A. de C.V.
10	29049	7963	0.79%	291	27.36	DELTA-TELECOM-AS Delta Telecom LTD.
11	14522	7032	0.70%	352	19.98	Satnet
12	4847	6584	0.65%	354	18.60	CNIX-AP China Networks Inter-Exchange
13	35931	6315	0.63%	5	1263.00	ARCHIPELAGO - ARCHIPELAGO HOLDINGS INC
14	30890	5699	0.56%	438	13.01	EVOLVA Evolva Telecom s.r.l.
15	45899	5429	0.54%	240	22.62	VNPT-AS-VN VNPT Corp
16	9198	5323	0.53%	251	21.21	KAZTELECOM-AS JSC Kazakhtelecom
17	14420	5280	0.52%	405	13.04	CORPORACION NACIONAL DE TELECOMUNICACIONES CNT S.A.
18	17974	5023	0.50%	1046	4.80	TELKOMNET-AS2-AP PT Telekomunikasi Indonesia
19	3549	4966	0.49%	758	6.55	GBLX Global Crossing Ltd.
20	36992	4964	0.49%	636	7.81	ETISALAT-MISR
21	35805	4912	0.49%	625	7.86	UTG-AS United Telecom AS
22	25620	4666	0.46%	186	25.09	COTAS LTDA.
23	4795	4549	0.45%	258	17.63	INDOSATM2-ID INDOSATM2 ASN

000

The BGP Instability Report

C Q- Google

Å

+ Shttp://bgpupdates.potaroo.net/instability/bgpupd.html

💭 🇰 Radio 🔻 Philip 🔻 Networking 👻 Cisco 💌 Miscellaneous 💌 Smart Bookmarks 💌 TinyURL!

50 Most active Prefixes for the past 7 days

RANK	PREFIX	UPDs	%	Origin AS AS NAME
2	200.13.36.0/24	10192	0.93%	28477 Universidad Autonoma del Esstado de Morelos
3	188.187.184.0/24	8776	0.80%	41786 ERTH-YOLA-AS CJSC "Company "ER-Telecom" Yoshkar-Ola
4	64.76.40.0/24	4485	0.41%	3549 GBLX Global Crossing Ltd.
5	198.140.43.0/24	3757	0.34%	35931 ARCHIPELAGO - ARCHIPELAGO HOLDINGS INC
6	193.105.163.0/24	3083	0.28%	13004 SOX Serbian Open Exchange
7	206.184.16.0/24	2953	0.27%	174 COGENT Cogent/PSI
8	205.91.160.0/20	2947	0.27%	5976 DNIC-ASBLK-05800-06055 - DoD Network Information Center
9	63.211.68.0/22	2558	0.23%	35931 ARCHIPELAGO - ARCHIPELAGO HOLDINGS INC
	91.212.23.0/24	2467	0.23%	48754 SOBIS-AS SC SOBIS SOLUTIONS SRL
11	202.92.235.0/24	2455	0.22%	9498 BBIL-AP BHARTI Airtel Ltd.
12	143.138.107.0/24			747 TAEGU-AS - Headquarters, USAISC
13	193.16.43.0/24	2401	0.22%	29661 INTI-AS INTI Autonomous System
14	193.16.111.0/24	2338		15836 AXAUTSYS ARAX I.S.P. 31557 IGT-MOLD-NET-AS IGT Communications AS
15	202.89.118.0/24	2285	0.21%	45670 SOFTCRYLICNET1-IN #160,North Usman Road, Third Floor
16	203.81.166.0/24	1942	0.18%	18399 BAGAN-TRANSIT-AS Bagan Cybertech IDC & Teleport International Transit
17	187.86.61.0/24	1617	0.15%	53065
18	124.254.32.0/19	1617	0.15%	4847 CNIX-AP China Networks Inter-Exchange
19	124.14.64.0/18	1617	0.15%	4847 CNIX-AP China Networks Inter-Exchange
20	220.113.32.0/20	1616	0.15%	4847 CNIX-AP China Networks Inter-Exchange
21	124.14.224.0/19			4847 CNIX-AP China Networks Inter-Exchange
	202.61.214.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
23	202.61.216.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
	202.61.170.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
25	202.61.219.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
	202.61.229.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
27	202.61.215.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
	202.61.217.0/24			10113 DATAFAST-AP DATAFAST TELECOMMUNICATIONS LTD
29	180.233.225.0/24	1356	0.12%	38680 CMBHK-AS-KR CMB

Aggregation: Summary

Aggregation on the Internet could be MUCH better

- 35% saving on Internet routing table size is quite feasible
- Tools are available
- Commands on the router are not hard
- CIDR-Report webpage
- RIPE Routing WG aggregation recommendation
 - RIPE-399 www.ripe.net/docs/ripe-399.html

Receiving Prefixes

- ISPs should only accept prefixes which have been assigned or allocated to their downstream peer
- For example
 - downstream has 100.50.0.0/20 block
 - should only announce this to peers
 - peers should only accept this from them

Receiving Prefixes: Cisco IOS

Configuration Example on upstream

router bgp 100
neighbor 102.102.10.1 remote-as 101
neighbor 102.102.10.1 prefix-list customer in
!

ip prefix-list customer permit 100.50.0.0/20
ip prefix-list customer deny 0.0.0.0/0 le 32

Not desirable unless really necessary

- special circumstances
- Ask upstream to either:
 - originate a default-route
 - announce one prefix you can use as default

Downstream Router Configuration

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 101.5.7.1 remote-as 101
neighbor 101.5.7.1 prefix-list infilt in
neighbor 101.5.7.1 prefix-list outfilt out
ip prefix-list infilt permit 0.0.0.0/0
ip prefix-list infilt deny 0.0.0.0/0 le 32
ip prefix-list outfilt permit 101.10.0.0/19
ip prefix-list outfilt deny 0.0.0.0/0 le 32
```

Upstream Router Configuration

```
router bgp 101
neighbor 101.5.7.2 remote-as 100
neighbor 101.5.7.2 default-originate
neighbor 101.5.7.2 prefix-list cust-in in
neighbor 101.5.7.2 prefix-list cust-out out
ip prefix-list cust-in permit 101.10.0.0/19
ip prefix-list cust-in deny 0.0.0.0/0 le 32
ip prefix-list cust-out permit 0.0.0.0/0
ip prefix-list cust-out deny 0.0.0.0/0 le 32
```

If necessary to receive prefixes from upstream provider, care is required

- don't accept RFC1918 etc prefixes
- don't accept your own prefix
- don't accept default (unless you need it)
- don't accept prefixes longer than /24

Receiving Prefixes

```
router bgp 100
network 101.10.0.0 mask 255.255.224.0
neighbor 101.5.7.1 remote-as 101
neighbor 101.5.7.1 prefix-list in-filter in
ip prefix-list in-filter deny 0.0.0.0/0
                                                   ! Block default
ip prefix-list in-filter deny 0.0.0.0/8 le 32
ip prefix-list in-filter deny 10.0.0.0/8 le 32
ip prefix-list in-filter deny 101.10.0.0/19 le 32 ! Block local prefix
ip prefix-list in-filter deny 127.0.0.0/8 le 32
ip prefix-list in-filter deny 169.254.0.0/16 le 32
ip prefix-list in-filter deny 172.16.0.0/12 le 32
ip prefix-list in-filter deny 192.0.2.0/24 le 32
ip prefix-list in-filter deny 192.168.0.0/16 le 32
ip prefix-list in-filter deny 224.0.0.0/3 le 32
                                                   ! Block multicast
ip prefix-list in-filter deny 0.0.0.0/0 ge 25
                                                   ! Block prefixes >/24
ip prefix-list in-filter permit 0.0.0.0/0 le 32
```

Generic ISP BGP prefix filter

- This prefix-list MUST be applied to all external BGP peerings, in and out!
- RFC5735 lists many special use addresses
- Check Team Cymru's bogon pages
 - http://www.cymru.com/Bogons
 - http://www.cymru.com/BGP/bogon-rs.html bogon route server

Prefixes into iBGP

Injecting prefixes into iBGP

Use iBGP to carry customer prefixes

- don't use IGP
- Point static route to customer interface
- Use BGP network statement
- As long as static route exists (interface active), prefix will be in BGP

Router configuration: network statement

Example:

```
interface loopback 0
ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
ip unnumbered loopback 0
ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
network 215.34.10.0 mask 255.255.252.0
```

Injecting prefixes into iBGP

interface flap will result in prefix withdraw and reannounce

- use "ip route...permanent"
- many ISPs use redistribute static rather than network statement
 - only use this if you understand why

Router Configuration: redistribute static

Example:

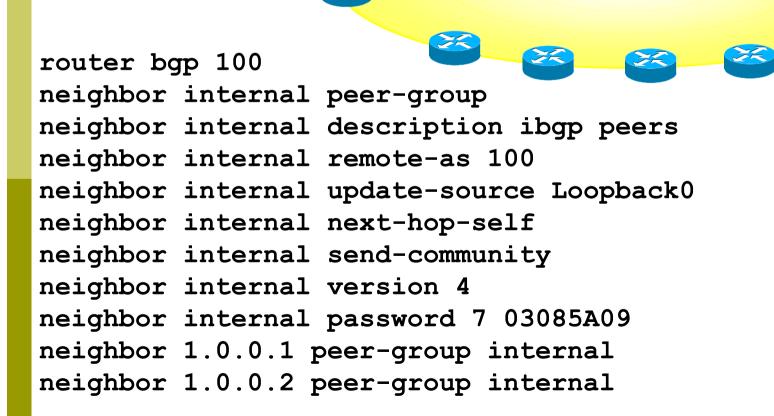
```
ip route 215.34.10.0 255.255.252.0 Serial 5/0
1
router bgp 100
 redistribute static route-map static-to-bqp
<snip>
route-map static-to-bgp permit 10
match ip address prefix-list ISP-block
 set origin igp
<snip>
ip prefix-list ISP-block permit 215.34.10.0/22 le 30
ļ
```

Injecting prefixes into iBGP

- Route-map ISP-block can be used for many things:
 - setting communities and other attributes
 - setting origin code to IGP, etc
- Be careful with prefix-lists and route-maps
 - absence of either/both means all statically routed prefixes go into iBGP

Configuration Tips

Templates

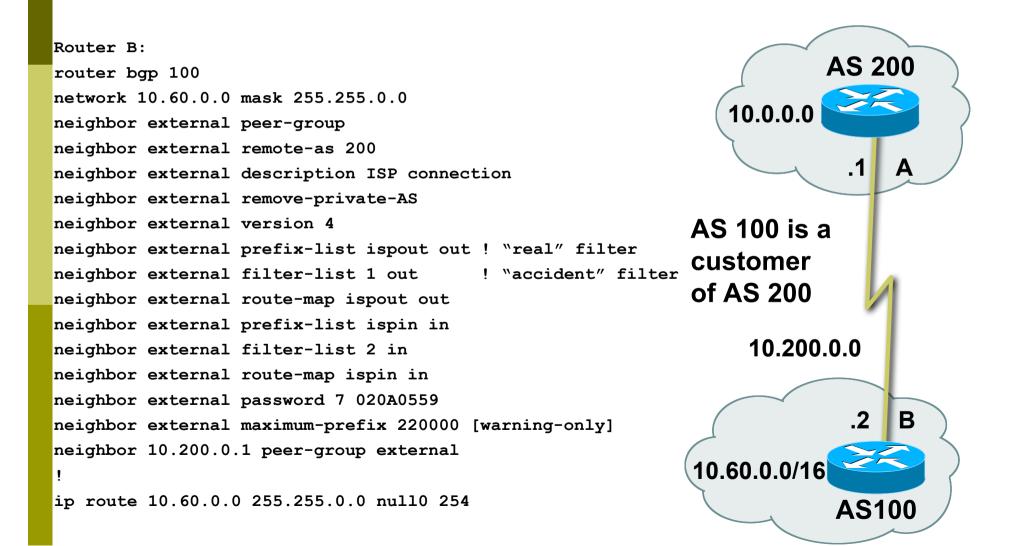

Good practice to configure templates for everything

- Vendor defaults tend not to be optimal or even very useful for ISPs
- ISPs create their own defaults by using configuration templates
- Sample iBGP and eBGP templates follow for Cisco IOS

BGP Template – iBGP peers

iBGP Peer Group

AS100


BGP Template – iBGP peers

Use peer-groups

iBGP between loopbacks!

- Next-hop-self
 - Keep DMZ and point-to-point out of IGP
- Always send communities in iBGP
 - Otherwise accidents will happen
- Hardwire BGP to version 4
 - Yes, this is being paranoid!
- Use passwords on iBGP session
 - Not being paranoid, some ISPs consider this VERY necessary

BGP Template – eBGP peers

BGP Template – eBGP peers

Remove private ASes from announcements

- Common omission today
- Use extensive filters, with "backup"
 - Use as-path filters to backup prefix-lists
 - Use route-maps for policy
- Use password agreed between you and peer on eBGP session
- Use maximum-prefix tracking
 - Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired

More BGP "defaults"

Log neighbour changes

- Log neighbour changes
- bgp log-neighbor-changes
- Enable deterministic MED
 - bgp deterministic-med
 - Otherwise bestpath could be different every time BGP session is reset
- Make BGP admin distance higher than any IGP
 - distance bgp 200 200 200

Configuration Tips Summary

Use configuration templates

- Standardise the configuration
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It's all about scaling if your network won't scale, then it won't be successful

Summary – BGP BCP

Initial Configuration
BGP versus IGP
Aggregation
Sending & Receiving Prefixes
Injecting Prefixes into iBGP
Configuration Tips